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for a signal which has been distorted by phase noise caused
by transmitter oscillator instabilities. The phase noise
model used is believed to be a conservative model in that
it assumes very little is known as to the noise structure.
The detector differs in design from that belleved to be
optimum for very low capacity channels (independent of the
phase noise model used). This belief 1s based on the assump-
tion that signals designed for low capacity channels are
transmitted at low signal-to-nolse predetection ratios.
This in turn leads to concern with the definition of low
signal-to-noise ratios. PFinally it is shown that for the
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At low data rates and for very low capacity channels,
the effects of oscillator instabilities cannot be ignored.
That 1is, if an oscillator 1s designed so that the frequency is

accurate to within one part in 108 on a short term basis and if

we are transmitting at a desired carrier frequency of 2 x lO9
hertz, then the carrier frequency can vary by as much as 20
hertz.

There are several space channels for which such car-
rier frequency deviations can result in serious problems. For
example, it has been suggested that in lunar explorations a
network of low power - low data rate sensors be distributed
on the lunar surface. Since the temperature control of the
several oscillators generating RF carriers (at S-band) would be
taxed by the wide temperature variations on the Moon, such a
network design would have to account for oscillator instabil-
ity. In addition, oscillator instabilities are of concern in
the transmission of data from low power deep space probes.

In this paper we ma*ﬁ em tlcaily mcdel thce phase instability
and then derive the optimum detector for this very low capacity
channel, ¥

Several researchers 1,2,3 have devised models which
attempt to mathematically characterize the oscillator random-
ness. In particular, Viterbi has modeled the oscillator ran-
domness in terms of ftransmissions of narrow band Gaussian
processes centered around some known frequency W, Thils means

that the transmitted signal has a uniformly distributed phase
uncertainty together with a Raleigh fading amplitude. Fergurson
points out that this model suffers in that most researchers be-
lieve that amplitude variations due to oscillator instabilities
are not significant. Ferguson then goes on to describe several
models in each of which the variations of the oscillator is
characterized as a random phase process. He then shows that no
matter how one characterizes the oscillator randomness the de-
rived optimum incoherent detector asymptotically reduces to a
guadratic processor for received signals with small predetection
signal-to-noise ratios. The quadratic detector is one which has
the following form for low signal-to-noise ratios:

¥The term optimum is used in the Bayesean sense of minimiz-
ing the average risk or equivalently deriving the maximum like-
l1ihood detector for the transmission of equi-likely signals.

2,3
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T T
J[ J( y(t) y*¥(u) R(t,u)dt du,
0 -0

y(t) is the received signal,

where

y*¥(u) is the complex conjugate of y(t), and

R(t,u) is the weighting function that must satisfy the
properties of an auto-correlation function.

Finally Ferguson describes and evaluates the performance
of a very good realization of a quadratic processor, the spectrum
analyzer.

This paper is motivated by the realization that the low
signal-to-noise model may not be reasonable for many very low ca-
pacity channel applications. Thus, we will show how a particular
model of the oscillator phase randomness leads to a realizable
optimum detector for all signal-to-noise ratios and in the process
we will show why the quadratic detector may not be valid for its
prescribed application.

Both Viterbi and Ferguson assumed the use of an M'ary
orthogonal transmission alphabet to provide a coding improvement
at the expense of an increased information bandwidth. We will do
the same in this paper and in addition it is assumed that our or-
fhogonality is achieved by proper frequency separation.¥ We thus
transmit one of M equally possible frequency orthogonal messages
in a time T containing log2 M bits of information. The receiver

has to determine which of the M signals is transmitted when the
transmission 1is distorted by the phase noise ei(t) and additive

white Gaussian noise. ei(t) is a stepped approximation to the

actual phase noise and 1s illustrated in Figure 1.

ei(t)r ;1
%10 | RS
s ° 13
» t
T 2r 3T |4 o ol
L L L 1L L L
® i
+ T —*
FIGURE 1: The Random Phase Noise As a Function of Time

*¥The orthogonality of time is realized by orthogonal fre-
quency separations in MFSK.
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Mathematically ei(t) is described as follows:

L-1
_ B f o _ _atl 1
ei(t) = ? 05, Lu[t—L T] ult T T]J (1)
a=0
where
0t <0
u(t) =

1t >0

The wvariate eia is independent and uniformly distrib-

uted from -1 to I for all o and 1i.

1 e {1,2,++-M}

The transmitted signal x(t) can therefore be written
as

op 1/2
x(t) = | k cos(wit-kei(t)) (2)

¢

where E is the energy in the received symbol of duration T. The
parameter k is the propagation loss factor (k>1).

The received signal y(t) is then given by

-
3

~~

<t

~—
|

(n,,(t) cos w;t - n2i(t) sin wit] (3)

M
x(t) .,
K T .L

i=1

where {nij(t)} and {nQi(t)} are white, Gaussian, and independent

random variables.
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In Appendix A the optimum maximum likelihood detector
is derived with the result that the detector computes M energy

measures yk({zjk}) and decides that the signal transmitted is

max {yk({zjk}) : kK = 1,2,

where yk({zjk}) is given by

%il L-1
f(z,,) +wn 1 gz, )
3=0 Jk j=1 JK
Yk({ij}) =
ij
where
0 ij < 3.75
f(zjk) =
ij zjk > 3.75
h(zjk) Zix < 3.75
gz, ) =
Jk K(Z.k)
1/ Zsg > 370
Jk
2 4
h(zjk) = 1 + 3.5156229n° + 3.0899424n " +

¥Where the error

1.20671492n6

.0360768n1° + .00U5813n1°

I \

+ 2.659732n

(4)

(5)

(7)%

(8)

in the approximation is less than 12 x 1077,
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K(zy,) = .39894228 + .01328592nT + (9)
.00225319nT - .001575650 +
.00916281nt = .02057706nT +
.02635537n% - .01647633n" +
.00392377nt

where n = ij/3'75'

The zjk's are determined by computing the received

band-pass envelope correlation energy in each of the M sub-
channels {k: 1,2,+++M} for each of the L time intervals in
which the phase ejk is constant {j: The correlation period is

(3+41)7T

from j% to T

» with 0 < J < L-1}.

It is shown in Appendix B that a very good, although
less than optimum, decision rule for this system is simply to

v
compute the following Yk({zjk}) energy measures and select the
A"
max yk({zjk}) where

4 R;l 2 Lp ¥ ) o
jib ij if max ij of max Y {zjk} <
n
Y ({z D) ={ (10)
L-1
7 Vizg) otherwise
. j=0
where
C C
ij <
V(zjk) =
ij zjk > C
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C is optimized by a trial and error process and 1is

a function of L. As is shown in Appendix B, C is in the neigh-
borhood of the number 1.

We return now to the question of the validity of the
small signal model. If the quadratic detector is to be optimum

than all (zjk)l terms in the polynomial expansion for h(zjk)

(given by Equation 8) for which & is greater than 2 must be in-
significant. To show that this is not the case we note that ij

is a Rician distributed random variable whose density distribution
is given by

—-{Z + ,__2_E_.;2‘$‘
ij L JK {NOL/ J %
p( Jk) = 2,£) T exp . 2E Io(zjk) (11)
‘NO L NOL

The expectation of Z?k is given byu

fg LV a0

E(z,, /k transmitted) = | 7— | 4 r(1/22+1)

, _ B

| N L
‘1 .. _E 1 o
1F11§2+1, l’fN—E}} exp
\ o
L/2

E(zgk/i(i#k) transmitted) = ﬁgf MQ/2 r(1/29+1) (12)

o

where I'(a) is the gamma function and lFl(a;b;c) is a confluent
hypergeometric function.

The expectation of Z?k and Z?k has been computed with

the aid of Janke and Emde5 and the results are plotted in Figure 2.

¥, is equal to the product of the frequency uncertaln band-
width times the transmitted symbol period (T).
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FIGURE 2 - THE EXPECTATION OFz}, AND z{, AS A
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FUNCTION OF (NEO 7).
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It is to be noted that for values of == 2as small as .2

E
LN
o

the expectation of ij is greater than 1.*¥ Thus, on the
average, the ij terms, in Equation 9, of the MEQ order

will not be insignificant for values of E%~ greater than .2.
o

Since the energy per word-to-nolse spectral density can be
interpreted as the designed minimum value for acceptable
performance we find the following. To achieve a bit error

rate of better than 10—2 requires an E/No of at least 10 for

optimum detection of non-coherent FSK. Thus, for L < 50

the optimum detector could not be realized as a quadrature
processor. Since the required predetection energy-to-noise
spectral density for the MFSK system goes up for a given

value of bit error rate, we can conclude that for all MFSK
systems, the optimum receiver differs from that of the quadra-
ture processor for values of L < 50.%

Finally we note that in more conventional receivers
the absolute values of the energy measures are not significant
but only their ratios are. However, in the decision rules
given by Equations (4) and (10) the absolute values of the Z3x

parameters are significant and are given by Equation (A-5) for
optimum performance. This means that the optimum receiver must
be able to estimate the received word energy E and word energy-
fto-noise spectral density E/NO.

Results

It has been shown that a realization of an optimum
detector for a reasonable model of an MFSK time varying phase
uncertain transmission can be achieved. Unfortunately, the
calculation of the error rate metric, does not lend itself to
analysis but does to a simulation or experimental investigation.

It would thus be interesting to determine the perfor-
mance of this receiver and compare it to that of the spectrum

analyzer. In addition it is believed that the 1.9 x 10~/ error
in g(ZJk) Equation (9) is probably too rigid. Thus, one would

#It is to be noted that in Ferguson's paper'3 the graphical
results are for values of L and E/N_ which do not satisfy the
small signal optimality criterion.




i)

BELLCOMM, INC. -9 -

expect that h(zjk) and K(zjk), Equations (8) and (9), respec-

tively, can be simplified significantly without a correspond-
ingly significant loss in detector performance. This too can
be determined experimentally.
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APPENDIX A

DERIVATION OF THE OPTIMUM MAXIMUM LIKELIHOOD DETECTOR

We assume the signal transmitted is as described by
Equation (2) and the received signal is given by Equation (3).
The maximum likelihood detector for this M'ary FSK transmission
then makes M-1 likelihood comparisons to determine the most

likely signal transmitted. FEach of the likelihood ratios l(w /w )
is computed in the following manner

[

w, ): Pr[y(t)/ng

Pr[y(t)/wh]

” (A-1)

h

Where Pr[y(t)/wa] is the probability density of y(t)
assuming that signal o was transmitted.

This probability can be written conditionally as

Pr,[y(t)/wa] = j,Pr(y(t)/wa,{ei}) P({ei}) d{e,} (A=2)
{B.}

1

where {ei} is the set of independent uniformly distributed phase
variables defined by Equation (1).

P({ei}) is the joint probability density of {ei}.

Substituting Equation (A-2) into Equation (A-1) and
making use of the narrow band, white, and Gaussian assumption
about the noise leads to

2TW 2

-

PE os{ [ +( “1)t]+e } /202
J =111 lj\/T L m H 0N-Jde d6 . +-+-de
(ZH) 217722 LT
. L 2tw 14(3-1)1 z i
([r - Z Z -~ [2E COS[ [—L]*-e /20
i J=1 i=1 T ces
(2H)ijf/e I Jdehldeh2 de,
-
(A-3)
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where T = %

Using the narrow band assumption Equation (A-3) can
be written as

n Chay 1 2
I - ;;l yij EE cos 0%[§W + (j-1)1)+ erJ/ON
i e VT de
). 2
Ll ——i=
wh] T 2rT~W =y 1 2
L [,f - RN yij 2E cos (mh[ﬁ + (j-1)1)+ ehj ]/ON
T e T T dse
=1 J,
which 1s equivalently 1
2
! JT ; ) Jrt 2
L { 5 jf ! , i ]
T It y(t)[2E cos w t dt + [ y(t)[2E sin w t df ||
z’_“°_2)= 3=1 ol (521)e T SN CE Ok T : |
™ )
; : -2 . 2
it "JT . . r'JT A
b 2i1 N - B
T I\go|l ) v(5)f2E cos wt ag +] | y(t)\/E_E sin w t dt| ;|
j=1 o'i(j=1)t T SRR GEIDE: T /

(A-1)

where the standard approximation

o
£

2aw /
1 nY
w Z Xq2y = /Xizi dt
i=1 o)
has been used.

IO(B) is the modified Bessel function of the first kind
and zero order with argument Bg.
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Thus we see from Equation (A-4) that the arguments of
the modified Bessel functilions are simply the narrow band envelope
outputs of a non-coherent matched filter, where the integration
time 1t is the time in which the random phase is constant. As a
simple check we note that for L=1 the receiver reduces to one well
known for the optimum non-coherent detection of MFSK.

The form of the detector as implied by Equation (A-4)

has been previously derived by Ferguson. However, Ferguson(B)
concluded that such a receiver would be to difficult to realize.

(6)

However, if we made use of the following polynomial expansions,

x < 3.75

I(x) =1+ 3.5156229t2 + 3.0899424t" +

6 8

1.2067492t° + 2.659732t" +

.0360768t10 + .o0458136%° + ¢

le| < 1.6 x 1077
(a-5)"
3.75 < X

=

x°e™*I_(x) = .39894228 x 03988024t ~ .00362018t7° +

4

0016380173 + 02282967172

.02895312t‘6 + .0178765ut’7 - .00u20059t‘8 + ¢

.01031555¢t"

le| < 2.2 x 1077

then the decision criteria can be given as in Equations 3 and 4
of the text.
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APPENDIX B

A SIMPLE NEAR-OPTIMUM DECISION RULE

As discussed 1n Appendix A the optimum receiver forms
M weighted measures

L-1
E Io(ak) where a >0

k=0

and compares them to determine which is maximum. Let us first
take the case for L=2. We then may write

m T
1 I + a. cos 6, + a. cos ©
1T (a) == | e ! 1= 2 de.de (B-1)
k=g © T 1772
o
If we expand the exponentials in an infinite series
LN 3
1 Y (+ a; cos 8, t+ a, cos 6,)
n I (ak) = = ; - de.de
K=o © ﬂ2J ] o j! 1772
o“o0 j=0
which can be written as
1 ) ﬁ - J
_ _i : ST g m J-m
E Io(ak) - \m) (ialcosel) (ta,cos6,) de,de, (B-2)
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Using the following identities

o s O
[cose]® = (%_) e‘jea[1+e 236]
a a
a _ |1 ‘(_ je(a=-2t)  ay
[cose]” = {2} tooe e
t=0
a-1
1 o-1 (:Zm ‘
.5 K 1%} cos(a=-2t)8 o odd
t=0
(B-3)
a-1
AN R
‘%\ K (z) cos(a=2t)e + {%3 52 a even
[ S— H \_
t=0 2
Using Equation (B-3), Equation (B-2) reduces to
1 SOl m (-m)toay ag !
Il Io(ak) = . 2 : (B—u)
=0 j=0 m=0 JIL(IFH 1 (1] 27" 2"
J even
m even
which simplifies to
1 >oon aT ag-m
it Io(ak) = ) 5 (B-5)
= Lo . i { =
K=o §=0 m=0 27[(W1 (L3M1]
J even

m even
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Let % = o and % = B then we can write Equation (B-5)
as
1 :: 8’ al2aa228
T I(a) = ) (B-6)
B=0 a=0 2""[(a)! (B-a)!]
and finally
1 N I T
n I (a) = E: \ (B=7)
k=o © K " 28 .
B=0 a=0 27 s 1]
which can be bounded by
L N 1 28
n I (a) < (a +a,)
K=o O K L. g 2 "1 %2
B=0 2°7[R!]
w 8 (B-8)
, T 1 5 (a 248, 2)
- .. 26 l 2
=0 277[s!]
and in general 1t can be shown that
B
o ‘L-1 2"
L_l K“ l ;AY‘ H
oI (a) < Y —2—— 1Y a ||
K=0 (@] k - (. 23 2 t\é_, k !
g=0 27°[g!] k=0 !
(B-9)
R
S L-1 F
N 1 < 2
Z /. 28 2 | .. %
g=0 2°°[g!] Llk=o
Thus
2
(L1 b L-1 L-1
(L_. S AN R A (B-10)
k=0 k=0 =0 -0
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Unfortunately
L-1 L-1
n I (a, ) < 0T I (b))
k=0 ° k k=0 °© k
does not necessarily imply
L-1 L-1
2 T 2
Lo ak < — b Kk
k=0 k=0

By use of a trial and error method a decision rule,
based on the bounds given in Equation (B-10), has been derived
and 1s presented in Equation (10) of the text. To see how this
rule compares with the optimum decision rule, Table B-1 is
given* with T=1 and L=2. It is to be noted that the region un-
certainty occurs only when

V] N
v, ({z.. }) -y ({z, W < |
| ky kg ky Ik, |

It is believed that this region of uncertainty in-
creases with L at a slow rate but this has not been verified.

¥The modified Bessel function was evaluated using National

of Bureau of Standards' Tables.6’7
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Comparison of Optimum Decision Rule With

B-5

TABLE B-1

The One Given by Equation (10) - L=2

=
Xl X2 yl y2
T .5 .9 .3
8.0 4.8 9.0 3.0
8.0 4.2 9.0 3.0
8.0 4.0 9.0 3.01
8.0 8.0 10.0 5.0
8.0 8.0 10.0 5.9
8.0 8.0 10.0 6.1
7.0 7.0 10.0 .1
6.0 4.9 10.0 .1
20.0 .1 10.0 10.0
20.0 A 5.1 16.0
.8 .8 .9 .69
.8 .8 1.0 .5
1.01 5.01 .9 .9
3.0 4,0 5.0 1.9
6.0 .1 10.0 .1
6.0 5.45 10.0 .1
6.0 5.5 10.0 .1
1.3 .01 .9 .9
3.05 4,0 5.0 1.9
20.5 .1 5.5 16.0

Equation (12)

Choose

S S - T T B

>
*

Decision

Optimum

Choose

R S S T L < B A S I

¥Asterisk identifies points where decision rules differ in

decision.




